CHAPITRE 10:

UISSAN<u>CE ENTI</u>ÈRE D'UN

PUISSANCE ENTIÈRE POSITIVE D'UN NOMBRE RELATIF

DÉFINITION Si a représente un nombre relatif quelconque, et si est n représente un nombre entier supérieur ou égal à 1, on appelle « a puissance n » le nombre noté « a^n » et qui est égal à :

$$a^n = \underbrace{a \times a \times \dots \times a}_{n \text{ fois}}$$

REMARQUES

Pour tout nombre relatif a,

- a^2 peut aussi se lire « a au carré ».
- a^3 peut aussi se lire « a au cube ».
- a^n peut aussi se lire « a exposant n ».
- $a^0 = 1$.

EXEMPLES

DÉFINITION Si a est un nombre relatif non nul, alors $a^0 = 1$.

EXEMPLES

$$3^0 = 1$$

$$2107^0 = 1$$

$$0, 2^0 = 1$$

$$(-3)^0 = 1$$

$$-2^0 = -1$$

$$2107^0 = 1$$
 $0, 2^0 = 1$ $\left(-3\right)^0 = 1$ $\left(\frac{3}{4}\right)^0 = 1$

CAS DES PUISSANCES DE 10

PROPRIÉTÉ Si n est un nombre en entier positif ou nul, alors la valeur décimale de 10^n est le nombre entier s'écrivant avec le chiffre 1 suivi de n chiffres 0.

Autrement dit,
$$10^n = \underbrace{10 \times 10 \times \cdots \times 10}_{n \text{ fois}} = 1 \underbrace{00 \dots 0}_{n \text{ zéros}}$$

EXEMPLES

$$10^0 = 1$$

$$10^2 = 100$$

$$10^2 = 100$$
 $10^3 = 1000$

$$10^6 = 1\ 000\ 000$$

$$10^6 = 1\ 000\ 000$$
 $10^9 = 1\ 000\ 000\ 000$

PUISSANCE ENTIÈRE NÉGATIVE D'UN NOMBRE REI

Si a est un nombre relatif non nul, alors a^{-n} est l'inverse de a^n .

Autrement dit
$$a^{-n} = \left(\frac{1}{a}\right)^n = \underbrace{\frac{1}{a} \times \dots \frac{1}{a}}_{n \text{ fois}} = \frac{1}{a^n}.$$

EXEMPLES

$$5^{-1} = \frac{1}{5}$$
$$= 0, 2$$

$$\begin{vmatrix} 5^{-2} = \left(\frac{1}{5}\right)^2 \\ = \frac{1}{5} \times \frac{1}{5} = \frac{1}{25} \end{vmatrix}$$

$$\begin{vmatrix} 5^{-2} = \left(\frac{1}{5}\right)^2 \\ = \frac{1}{5} \times \frac{1}{5} = \frac{1}{25} \end{vmatrix} = \frac{1}{-4} \times \frac{1}{-4} \times \frac{1}{-4} = -\frac{1}{64} \begin{vmatrix} \left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 \\ = \frac{1}{-4} \times \frac{1}{-4} \times \frac{1}{-4} = -\frac{1}{64} \end{vmatrix} = \frac{3}{2} \times \frac{3}{2} = \frac{9}{4}$$

PROPRIÉTÉ

Si n est un nombre en entier positif ou nul, alors la valeur décimale de 10^{-n} est le nombre décimal s'écrivant : $0, 0 \dots 0 1$. n fois le zéro

$$10^{-1} = 0.1$$

$$10^{-2} = 0.01$$

$$10^{-3} = 0,000$$

$$10^{-6} = 0,00000$$

$$10^{-2} = 0.01$$
 $10^{-3} = 0.001$ $10^{-6} = 0.000001$ $10^{-9} = 0.000000001$

PRODUIT D'UN NOMBRE RELATIF PAR DES PUISSANCES

PROPRIÉTÉ Si n est un entier positif ou nul alors :

- multiplier un nombre décimal par 10^n revient à déplacer la virgule de son écriture décimale de n rangs vers la droite.
- diviser un nombre décimal par 10^n revient à déplacer la virgule de son écriture décimale de n range vers la gauche.

$$2,3\times 10^2 = 2,3\times 100 = 230 \ \big| \ 0,031\times 10^4 = 0,031\times 10\ 000 = 310\ \big| \ 10^5\times 10^3 = 100\ 000\times 1000 = 100\ 000\ 000 = 10^8$$

PROPRIÉTÉ Si n est un entier positif alors,

- multiplier un nombre décimal par 10^{-n} revient à déplacer la virgule de son écriture décimale de n rangs vers la gauche.
- multiplier un nombre par 10^{-n} revient à diviser ce nombre par 10^{n} .

$$123 \times 10^{-2} = 123 \times 0,01 = 1,23$$

$$0.031 \times 10^{-2} = 0.031 \times 0.01 = 0.00031$$

PROPRIÉTÉ Si a et b sont deux nombres relatifs non nuls et si n et p sont deux entiers relatifs alors:

$$a^n \times a^p = a^{n+p}$$

$$a^n \div a^p = \frac{a^n}{a^p} = a^{n-p} \qquad (a^n)^p = a^{n \times p}$$

$$(a^n)^p = a^{n \times p}$$

$$(ab)^n = a^n \times b^n$$

DÉFINITION On appelle écriture scientifique d'un nombre décimal une écriture de ce nombre sous la forme d'un produit d'une puissance de dix et d'un nombre décimal n'ayant qu'un seul chiffre non nul dans sa partie entière.

P		
Écriture décimale	Écriture intermédiaire	Écriture scientifique
27	$2,7 \times 10$	$2,7 \times 10^{1}$
234,5	$2,345 \times 100$	$2,345 \times 10^2$
3,14	$3,14 \times 1$	$3,14 \times 10^{0}$
0,0012	$1,2 \times 0,001$	$1,2 \times 10^{-3}$

Préfixes à connaître :

Tera (T)=
$$10^{12}$$
 (billion)
milli (m) = 10^{-3}

Giga (G) =
$$10^9$$
 (milliard)
micro (μ)= 10^{-6}

Mega (M)=
$$10^6$$
 (million)
nano (n) = 10^{-9}

Kilo (K) =
$$10^3$$

pico (p)= 10^{-12}

INTRODUCTION AUX PUISSANCES DE RELATIFS

On suit la consigne suivante :

CONSIGNES

- Étape 1 : on déchire une feuille de papier en 2.
- Étape 2 : on déchire en 2 chacun des 2 morceaux obtenus.
- Étapes suivantes : on recommence à découper chaque morceau de l'étape précédente en 2.
- 1) Combien il y a-t-il de morceaux de papier au bout de 3 étapes?
- 2) Combien faut-il d'étapes pour avoir 32 morceaux de papiers?
- 3) À partir de quelle étape obtient-on au moins 1000 morceaux? 2000 morceaux? 10000 morceaux?
- On suit la consigne suivante :

CONSIGNES

- Étape 1 : on déchire une feuille de papier en 3.
- Étape 2 : on déchire en 3 chacun des 3 morceaux obtenus.
- Étapes suivantes : on recommence à découper chaque morceau de l'étape précédente en 3.

À partir de quelle étape obtient-on au moins 1000 morceaux? 2000 morceaux? 10000 morceaux?

On suit la consigne suivante :

CONSIGNES

- Étape 1 : on déchire une feuille de papier en 5.
- Étape 2 : on déchire en 5 chacun des 5 morceaux obtenus.
- Étapes suivantes : on recommence à découper chaque morceau de l'étape précédente en 5.

À partir de quelle étape obtient-on au moins 10000 morceaux?

On suit la consigne suivante :

CONSIGNES

- Étape 1 : on déchire une feuille de papier en 10.
- Étape 2 : on déchire en 10 chacun des 10 morceaux obtenus.
- Étapes suivantes : on recommence à découper chaque morceau de l'étape précédente en 10.

À partir de quelle étape obtient-on au moins 10000 morceaux?

П

EXERCICES D'APPLICATION

O5 Calculer en donnant le résultat sous la forme d'un nombre entier.

$$2^3 = \dots$$

$$3^2 = ...$$

$$0^4 = \dots$$

$$5^1 = \dots$$

$$5^3 == \dots$$

$$3^4 = \dots$$

$$4^4 = \dots$$

$$2017^1 = \dots$$

$$1^{2017}=\dots$$

$$2017^0 = \dots$$

$$20^{3} =$$

$$30^4 = \dots$$

$$2,7^0 = \dots$$

$$0, 1^3 = \dots$$

$$0, 2^2 = \dots$$

$$10^3 = \dots$$

$$10^4 = \dots$$

$$10^1 = \dots$$

$$10^0 = \dots$$

$$10^5 = \dots$$

$$(-2)^4 = \dots$$

$$(-5)^3 = \dots$$

$$-2^4 = \dots$$

$$(-1)^{2017} = \dots$$

$$(-1)^{2016} = \dots$$

Recopier dans le cahier d'exercices et calculer en donnant le résultat sous la forme d'une fraction.

$$\left(\frac{1}{2}\right)^2$$

$$\left(\frac{-1}{2}\right)$$

$$\left(\frac{5}{-3}\right)^2$$

$$\frac{3^2}{5}$$

$$\frac{3}{5^2}$$

$$\left(\frac{2}{5}\right)^2$$

$$\frac{(-2)^2}{7^2}$$

$$\frac{(-3)^3}{3}$$

$$\frac{2^2}{(-3)^2}$$

$$\frac{5}{(-2)^3}$$

Recopier dans le cahier d'exercices et écrire les nombres décimaux suivants sous la forme d'une puissance autre que 1. Donner différentes réponses quand c'est possible.

8

27

64

625

-8

$$\frac{1}{25}$$

$$\frac{27}{8}$$

$$1 + 2^3 =$$

$$10^2 + 5^2$$

$$3^2 + 4^2$$

Recopier dans le cahier d'exercices et écrire les nombres décimaux suivants sous la forme d'une unique puissance d'un nombre relatif.

$$10^{3} \times 10^{4}$$

$$10^{5} \times 10^{1}$$

$$10^{7} \times 10^{3}$$

$$10^{0} \times 10^{4}$$

$$\frac{10^3}{10^2}$$

$$\frac{10^5}{10^3}$$

$$\frac{10^8}{10^5}$$

$$\frac{10^{2017}}{10^{15}}$$

$$(10^2)^3$$

$$(10^3)^2$$

$$(10^3)^3$$

$$(10^2)^{2017}$$

Recopier dans le cahier d'exercices et écrire les nombres décimaux suivants sous la forme d'une unique puissance d'un nombre relatif.

$$2^{3} \times 2^{4}$$

$$3^5 \times 3^1$$

$$5^7 \times 5^3$$

$$8^{0} \times 8^{4}$$

$$\frac{2^3}{2^2}$$

$$\frac{4^{3}}{4^{3}}$$

$$\frac{6^8}{6^5}$$

$$\frac{3^{2017}}{3^{15}}$$

$$(5^2)^3$$

$$(8^3)^2$$

$$(7^3)^3$$

$$(2^2)^{2017}$$

10 Recopier dans le cahier d'exercice et calculer en donnant le résultat sous la forme d'un nombre entier.

$$1 + 2^2$$

$$5 + 2 \times 4^2$$

$$1-2\times(3^2+1)$$

$$(1+2^3)^2$$

$$5^2 + 5^2$$

$$3^2 \times 4^2$$

$$2^3 + 3^2$$

$$2^3 + 2^2$$

$$\frac{4-3^2}{1+2^2}$$

$$3 \times 2^2 + 5^2$$

III PUISSANCES DE DIX

11 Compléter le tableau suivant.

SOUS FORME DE PUISSANCE	ÉCRITURE DÉCIMALE	ÉCRITURE EN LANGUE FRANÇAISE
10^{6}		
	10 000	
		Un milliard
		Cent mille
		Cent millions
	10 000 000	
10^{10}		
	Chiffre 1 suivi de 100 zéros	Un gogol

IV PUISSANCES NÉGATIVES

12 Compléter les égalités suivantes

	Completer les égantes survantes.		
2^3	3^3	5^3	10^{3}
2^2	3^{2}	5^2	10^{2}
2^1	3^{1}	5^1	10^{1}
2^{0}	3^0	5^0	10^{0}
2^{-1}	3^{-1}	5^{-1}	10^{-1}
2^{-2}	3^{-2}	5^{-2}	10^{-2}
2^{-3}	3^{-3}	5^{-3}	10^{-3}

13 Compléter le tableau suivant.

SOUS FORME DE PUISSANCE	ÉCRITURE FRACTIONNAIRE	ÉCRITURE DÉCIMALE	ÉCRITURE EN LANGUE FRANÇAISE
10^{-3}			
10^{-4}			
		0,000 01	
			Un milliardième
	$\frac{1}{1\ 000\ 000}$		
		0,01	

14 Compléter le tableau suivant.

-				
Grandeur	en écriture scientifique	en écriture fractionnaire	en écriture décimale	en langue française
Distance de la terre au soleil (en km)			150 000 000	
Nombre moyen de cellules du corps humain d'un adulte				Soixante mille milliards
Diamètre d'un grain de sable (en m)	2×10^{-4}			
Diamètre de la terre aux pôles (en km)			12 700	
Durée (en seconde) mise par le son pour parcourir 1 m dans l'air			0,003	
Distance de Mars au soleil (en km)	2×10^8			
Effectif de la population mondiale				Sept milliards
Nbre moyen de sachets en plastique jetés en une année dans le monde	$7,8 \times 10^{11}$			
Durée (en seconde) mise par la lumière pour parcourir 1 m				Trois milliardièmes
Nbre moyen de neurones dans le cerveau humain à la naissance				Cent milliards

V RÉSOUDRE DES PROBLÈMES

- 15 En utilisant les données du tableau précédent, répondre aux questions suivantes.
- 1) Donner un ordre de grandeur en écriture scientifique du nombre moyen de sachets jetés par un humain en une année.
- 2) Donner un ordre de grandeur en écriture scientifique de la durée mise par la lumière pour parcourir la distance de la terre au soleil.
- [Avec tableur] Une légende raconte qu'un maharadja voulait récompenser l'inventeur du jeu d'échec. Ce dernier aurait demandé comme récompense qu'on lui offre 1 grain de blé sur la première case de son jeu, puis deux grains sur la deuxième case, quatre grains sur la troisième case, huit grains sur la quatrième case, et ainsi de suite.

Calculer le nombre de grains de blé sur la totalité de l'échiquier.

VI

ORDRES DE GRANDEURS ET ÉCRITURES SCIENTIFIQUES

17

Préfixes et ordre de grandeur

Compléter le tableau suivant (à connaître) :

Français	Écriture avec une sous-unité	Écriture scientifique	Écriture décimale (en m)	Objet
Un Teramètre	1 Tm		1 000 000 000 000 m	Distance entre deux galaxies
Un Gigamètre	1 Gm		1 000 000 000 m	Distance dans une galaxie
Un Mégamètre	1 Mm		1 000 000 m	Diamètre d'une planète
Un kilomètre		$1 \times 10^3 \text{ m}$		
		$1 \times 10^2 \text{ m}$		
		$1 \times 10^1 \text{ m}$		
Un décimètre				
Un centimètre				
Un millimètre	1 mm		0,001 m	
Un micromètre	1 μm		0,000 001 m	
Un nanomètre	1 nm	$1 \times 10^{-9} \text{ m}$		
Un picomètre	1 pm		0,000 000 000 001 m	Particule élémentaire

18 VIRUS ET MASQUES

Tirez vos propres conclusions après avoir complété le tableau suivant :

Individu	Écriture avec une sous-unité	Écriture scientifique	Écriture décimale (en m)
Virus Covid-19	Taille de 100 nm en moyenne		
Taille des plus petits virus arrêtés par les masques FFP3	0,6 µm		

19

SVT

Combien de fois le cœur humain bat-il pour une durée de vie de 80 ans? Écrire la réponse sous forme scientifique.

20 INFORMATIQUE

L'Amstrad CPC 464 était un ordinateur (1984) doté d'une mémoire vive (RAM) de 64 ko.

Un téléphone cellulaire actuel est doté d'une mémoire de 256 Go.

Combien de fois est plus grande la mémoire du téléphone par rapport à celle de l'Amstrad?

L'échelle de Scoville des Piments

L'échelle de Scoville est une échelle permettant de mesurer la force des piments.

Elle a été inventée en 1912 par le pharmacologue américain Wilbur Scoville.

Son but est de renseigner sur le piquant (pseudo-chaleur) des variétés de piments.

Pour ce faire, on mesure principalement le taux de capsaïcine, nom donné à l'une des molécules responsables de la sensation de piquant.

On a consigné dans le tableau ci-dessous des taux de capsaïcine de différents piments.

Compléter ce tableau.

	Produit	Moyenne des unités Scovilles de capsaïcine	Écriture scientifique de ces unités
1)	Poivron	50	
2)	Piment de Cayenne	40 000	
3)	Poivre blanc, poivre noir	10500	
4)	Piment d'Espe- lette	2000	
5)	Paprika	250	
6)	Nonivamide	9 200 000	
7)	Piment Naga Viper	1 359 000	
8)	Pepper x	3 180 000	
9)	Piment Trinidad Scorpion	1 463 700	
10)	Résinifératoxine	16 000 000 000	

Ex 01 Écriture scientifique d'un nombre

- 1) Ouvrir le tableur LibreOffice.calc.
- 2) Dans la cellule A1, entrer le nombre 3 000 000.
- 3) Réduire la taille de la cellule A1 jusqu'à ce que l'écriture de 3 000 000 soit modifiée, puis répondre aux deux questions suivantes :
 - **a)** Qu'affiche alors le tableur dans cette cellule?
 - **b)** Que signifie cette écriture?
- 4) Recopier et compléter le tableau ci-dessous dans le cahier d'exercices en vérifiant vos réponses avec le tableur.

Écriture scientifique (version informatique) du nombre	Écriture décimale du nombre
	7×10^6
7E+06	$=7\times\ldots$
	=
	$1,2 \times 10^3$
1,2E+03	$=1,2 imes\ldots$
	=
	$=28\ 100$
	$2,81 \times 10^{}$
	$= 781\ 000\ 000$
	$=7,81\times\ldots$
	$= 3 \ 245 \ 000 \ 000 \ 000 \ 000$
•••	$=3,245\times\ldots$

Ex 02 La légende de la récompense de l'inventeur du jeu d'échec

Une légende raconte qu'un maharadja voulait récompenser l'inventeur du jeu d'échec. Ce dernier aurait demandé qu'on lui offre 1 grain de blé sur la première case de son jeu, deux grains sur la deuxième case, quatre grains sur la troisième case, huit grains sur la quatrième case, et ainsi de suite jusqu'à la dernière case.

Utiliser le tableur pour répondre aux questions suivantes dans le cahier d'exercices :

- 1) Combien de grains de blé y aura-t-il sur la dernière case de l'échiquier?
- 2) Calculer le nombre de grains de blé sur la totalité de l'échiquier. Indication : utilisez la fonction "=somme(première case : dernière case)".
- 3) Sachant qu'un grain de blé pèse en moyenne 0,05 grammes et que la production mondiale actuelle de blé par année est de 650 tonnes, vérifier que la production mondiale est de $1,3 \times 10^{10}$ grains.
- **4)** Combien d'années faudrait-il pour payer l'inventeur du jeu d'échec avec la production mondiale actuelle de grains de blé?

