CHAPITRE 15:

EQUATIONS

ÉOUATIONS PRODUIT NUL

DÉFINITION On appelle équation « produit nul » une équation dont le membre de gauche est donné sous la forme d'un produit de deux facteurs et dont le membre de droite est zéro.

EXEMPLES Sont des équations produit nul :

EXEMPLES Ne sont pas des équations « produit nul » :

•
$$3 \times x = 0$$
;

•
$$2 \times (x+1) = 0$$
;

•
$$x^2 = 0$$
:

•
$$(3x-2) \times (5x+1) = 0$$

•
$$3x = 2$$
;

•
$$4 + (x + 1) = 0$$
:

•
$$x^2 = 8$$
:

•
$$(3x-2)+(5x+1)=0$$

Pour résoudre les équations « produit nul », on utilise la propriété suivante :

PROPRIÉTÉ Le produit de deux facteurs est nul, si et seulement si l'un des facteurs est nul. Autrement dit :

- si a, b sont deux nombres tels que $a \times b = 0$, alors a = 0 ou b = 0.
- si a, b sont deux nombres tels a = 0 ou b = 0 alors $a \times b = 0$.

EXEMPLE Résoudre l'équation $5 \times (7 - 5x) = 0$.

Il s'agit d'une équation de type produit nul.

Ce produit est nul si et seulement si (7-5x) est nul.

soit
$$-5x = -7$$
 soit $x = \frac{7}{-5} = \frac{7}{5} = 1,4$

On vérifie :
$$5 \times (7 - 5 \times 1, 4) = 5 \times (7 - 7) = 5 \times 0 = 0$$

Autre méthode:

On développe et on réduit $5 \times (7 - 5x) = 35 - 25x$.

On vérifie
$$\cdot 5 \times (7 - 5 \times 1 \ 4) = 5 \times (7 - 7) = 5 \times 0 = 0$$

EXEMPLE Résoudre l'équation $(2x+1) \times (2-3x) = 0$.

Ici, développer et réduire le permet pas de résoudre l'équation. Il s'agit d'une équation de type produit nul. Ce produit est nul si et seulement si l'un des facteurs (2x+1) ou (2-3x) est nul.

On résout donc chacune des deux équations suivantes :

$$2x + 1 = 0$$

donc
$$2x = -1$$

donc
$$x = \frac{-1}{2}$$

2 - 3x = 0

$$donc -3x = -2$$

donc
$$-3x = -2$$

donc $x = \frac{-2}{-3} = \frac{2}{3}$

On vérifie les solutions :

•
$$\left(2 \times \frac{-1}{2} + 1\right) \times \left(2 - 3 \times \frac{-1}{2}\right) = (-1 + 1) \times \left(2 + \frac{3}{2}\right) = 0 \times \frac{7}{2} = 0 \text{ Ok!}$$

•
$$\left(2 \times \frac{2}{3} + 1\right) \times \left(2 - 3 \times \frac{2}{3}\right) = \left(\frac{4}{3} + 1\right) \times (2 - 2) = \frac{7}{3} \times 0 = 0 \text{ Ok!}$$

Conclusion : $x = \frac{-1}{2}$ et $x = \frac{2}{3}$ sont les deux solutions de l'équation $(2x + 1) \times (2 - 3x) = 0$.

FACTORISER UNE EXPRESSION A L'AIDE DE LA SIMPL

DÉFINITION

- Développer un produit, c'est décrire sous la forme d'une somme.
- Factoriser une somme, c'est l'écrire sous la forme d'un produit.

Pour factoriser une somme, l'idée générale consiste à trouver un facteur commun entre les différents termes de la somme. Dans les exemples qui suivent, le facteur commun est à chaque fois souligné. Ensuite, on utilise la distributivité pour factoriser l'expression par ce facteur commun.

EXEMPLES Avec facteur commun évident.

PROPRIÉTÉ Rappels de la simple distributivité :

- —> sens de la factorisation
- $k \times a + k \times b = k \times (a + b)$
- $k \times a k \times b = k \times (a b)$
- <— sens du développement

$$A = 4x + 4$$

$$= 4x + 4 \times 1$$

$$= 4x + 4 \times 1$$

$$= 4(x + 1)$$

$$= 4(x + 1)$$

$$= 4(x + 1)$$

$$= (x - 1) + x(x - 1)$$

$$= (x - 1) \times (2 + x)$$

$$= (x - 1) \times (2 + x)$$

$$= (x - 1) \times (2 + x)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) + (3x + 1)(4x - 1)$$

$$= (4x - 1) \times (4x - 1) +$$

FACTORISER UNE EXPRESSION À L'AIDE DES IDENTITÉS REMAROUABLES

EXEMPLES S'il n'y a pas de facteur commun évident, on peut parfois utiliser une identité remarquable.

PROPRIÉTÉ Rappels des identités remarquables :

•
$$a^2 + 2ab + b^2 = (a+b) \times (a+b) = (a+b)^2$$

 $= \overline{(3x+1)} \times (-6x+2)$ $= \overline{(3x+1)}(-6x+2)$

•
$$a^2 - 2ab + b^2 = (a - b) \times (a - b) = (a - b)^2$$

•
$$a^2 - b^2 = (a+b) \times (a-b)$$

$$E = x^{2} - 8x + 16 \qquad F = 9x^{2} + 6x + 1 \qquad G = 25x^{2} - 64$$

$$= x^{2} - 2 \times 4x + 4^{2} \qquad = (3x)^{2} + 2 \times 3x + 1^{2} \qquad = (5x)^{2} - 8^{2}$$

$$= (x - 4)^{2} \qquad I = (3x)^{2} - (x + 1)^{2} \qquad J = (5x + 1)^{2} - 81$$

$$= ((x - 2) + (x + 3)) \times ((x - 2) - (x + 3)) \qquad = (3x + (x + 1)) \times (3x - (x + 1)) \qquad = (5x + 1)^{2} - 9^{2}$$

$$= (x - 2 + x + 3) \times (x - 2 - x - 3) \qquad = (3x + x + 1) \times (3x - x - 1) \qquad = (5x + 1)^{2} - 9^{2}$$

$$= (2x + 1) \times (-5) \qquad = (4x + 1) \times (2x - 1) \qquad = (5x + 1) \times (5x + 1 - 9)$$

$$= -5(2x + 1)$$

MÉTHODE DE RÉSOLUTION DES ÉQUATIONS DU SECOND DEGRÉ

MÉTHODE

Pour résoudre l'équation $(2x-7)^2 = (x+5)^2$:

On passe le membre de droite à gauche de l'égalité :	$(2x-7)^2 - (x+5)^2 = 0$
On factorise pour obtenir un produit, en utilisant l'identité remarquable $a^2 - b^2 = (a - b)(a + b)$	$[(2x-7) - (x+5)] \times [(x-7) + (2x+5)] = 0$
On réduit l'expression obtenue :	$(2x - 7 - x - 5) \times (x - 7 + 2x + 5) = 0$
	$(x - 12) \times (3x - 2) = 0$
Comme ce produit est nul, le facteur $(x-12)$ est nul ou le facteur $(3x-2)$ est nul donc :	x - 12 = 0 ou $3x - 2 = 0$
On résout ensuite les deux équations obtenues :	x = 12 ou $3x = 2$ autrement dit $x = 2/3$
On vérifie les valeurs obtenues :	Pour $x = 12$, d'une part : $(2x - 7)^2 = (2 \times 12 - 7)^2 = (24 - 7)^2 = 17^2 = 289$ D'autre part, $(x + 5)^2 = (12 + 5)^2 = 17^2 = 289$ On fait de même pour $x = \frac{2}{3}$: Pour $x = \frac{2}{3}$, d'une part : $(2 \times \frac{2}{3} - 7)^2 = \frac{289}{9}$ D'autre part : $(\frac{2}{3} + 5)^2 = \frac{289}{9}$
On conclut:	Les solutions de l'équation $(2x-7)^2 = (x+5)^2$ sont $x=12$ et $x=\frac{2}{3}$

MÉTHODE

Pour résoudre l'équation (3x - 2)(4x + 1) + (x + 2)(3x - 2) = 0:

On factorise pour obtenir un produit, en recherchant un facteur commun.	$\frac{(3x-2)(4x+1) + (x+2)(3x-2)}{(3x-2)[(4x+1) + (x+2)] = 0}$
On réduit ensuite l'expression	$\frac{(3x-2)(4x+1+x+2)=0}{(3x-2)(5x+3)=0}$
On utilise ensuite la propriété : le facteur $3x-2$ est nul ou le facteur $5x+3$ est nul On résout ces deux équations.	3x - 2 = 0 ou $5x + 3 = 03x = 2$ ou $5x = -3x = \frac{2}{3} ou x = -0, 6$
On vérifie pour $x = \frac{2}{3}$ ainsi que pour $x = -0, 6$	Pour $x = \frac{2}{3}$ on a: $(3 \times \frac{2}{3} - 2)(4 \times \frac{2}{3} + 1) + (\frac{2}{3} + 2)(3 \times \frac{2}{3} - 2) = 0$ et pour $x = -0, 6$ on a: $(3 \times 0, 6 - 2)(4 \times 0, 6 + 1) + (0, 6 + 2)(3 \times 0, 6 - 2) = 0$
Conclusion	Les solutions de l'équation sont : $x = -0, 6$ et $x = \frac{2}{3}$

RÉSOUDRE DES ÉQUATIONS DU SECOND DEGRÉ

Résoudre les équations suivantes :

1)
$$x(x+1) = 0$$

2)
$$2x(x-7)=0$$

3)
$$(8-x)(x+5)=0$$

4)
$$(2+5x)(3x-1)=0$$

5)
$$(5-3x)^2=0$$

02 Résoudre les équations suivantes :

1)
$$x(2+5x)+4(2+5x)=0$$

2)
$$(2x+3)(1+x) + (2x+3)(3+x) = 0$$

3)
$$(x-2)(3+2x) = (x-2)(4+2x)$$

4)
$$9x^2 + 30x + 25 = 0$$

5)
$$100x^2 = 81$$

FACTORISER UNE EXPRESSION LITTÉRALE Ш

Dans les trois exercices qui suivent, factoriser les expressions littérales données.

03

Ш

04

1) 3x + 9

1)
$$(x+1)(x+2) + (x+1)(2x+3)$$

2) (2x-1)(3x+2)-(x+1)(2x-1)

2)
$$12x + 4$$

3) $5x^2 + 3x$

3)
$$(5x-1)(3x+2)-(5x-1)$$

3)
$$(5x-1)(3x+2)-(5x-1)$$

4)
$$5(x+1) + 2(x+1)$$
 4) $(2-3x)(x+3) + (3x-2)(3x+5)$

$$(2-3x)(x+3)+(3x-2)(3x+3)$$

5)
$$x(3x-4)-5(3x-4)$$

5)
$$x(3x-4)-5(3x-4)$$
 5) $(4+6x)(x+1)+(2+3x)(2x-3)$

05

1)
$$x^2 + 2x + 1$$

2)
$$x^2 - 16x + 64$$

3)
$$4x^2 + 4x + 1$$

4)
$$x^2 - 100$$

5)
$$81x^2 - 10$$

RÉSOUDRE DES PROBLÈMES

- On donne le programme de calculs A ci-06 contre.
 - 1) Vérifier que l'image de 0 est -16.
 - 2) Déterminer les antécédents de 0.

PROGRAMME DE CALCULS A

- Choisir un nombre ;
- Le multiplier par 4.
- Ajouter 3 au résultat.
- Calculer le carré de cette somme.
- Soustraire 25 au résultat.

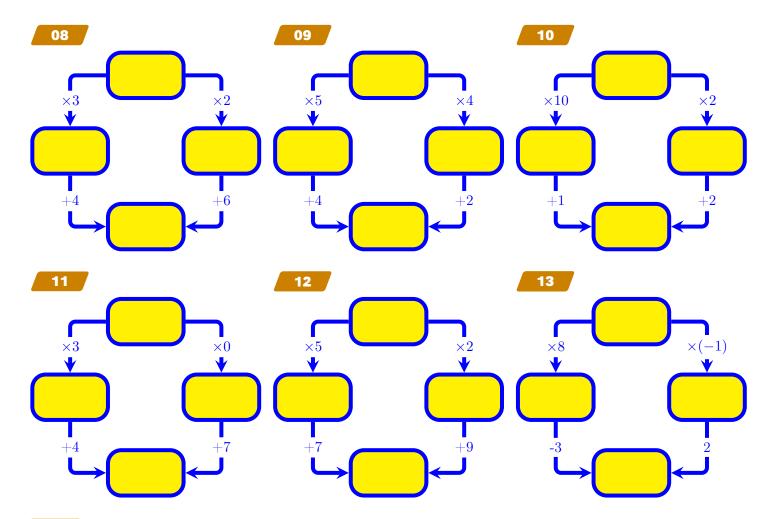
PROGRAMME DE CALCULS B

- On donne le programme de calculs ci-contre : Pour quelle(s) valeur(s) de départ obtient-on 0 avec ce programme de calculs?
- Choisir un nombre ;
- Le mettre au carré,
- Multiplier le résultat par 9,
- Soustraire 16 au résultat.

SÉANCE AP

CONSIGNES

Pour les six exercices qui suivent, compléter les schémas en ne mettant qu'un seul nombre par case.



- On dispose de 260 \in en billets de 5 \in et de 10 \in . Il y a 8 billets de 10 \in de plus que de billets de 5 \in . Trouver le nombre de billets de chaque sorte.
- Si on augmente la longueur du côté d'un carré de 6 cm, on obtient alors une figure dont l'aire mesure 84 cm² de plus que l'aire du carré. Quelle est la longueur du côté du carré?
 - 16 On veut partager équitablement une somme d'argent entre plusieurs personnes.
 - Si l'on donnait 200 € à chaque personne, il resterait 400 €.
 - Si l'on donnait 250 € à chaque personne, il manquerait 750 €.

Combien il y a t-il de personnes?